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SOME INEQUALITIES INVOLVING RATIOS AND PRODUCTS
OF THE GAMMA FUNCTION

MRIDULA GARG - AJAY SHARMA - PRATIBHA MANOHAR

In this paper we establish some generalized inequalities for the gamma
function, using the properties of logarithmically convex/concave func-
tions.

1. Introduction

The Euler gamma function Γ(x) is defined for x > 0 by [2]

Γ(x) =
∫

∞

0
extx−1dt. (1)

The psi or digamma function (the logarithmic derivative of the gamma
function) can be expressed as

Ψ(x) =
Γ′ (x)
Γ(x)

,x > 0. (2)

A function f : D→ R+ is said to be log-convex if [5]

f [ux+(1−u)y]≤ [ f (x)]u . [ f (y)]1−u ,0 < u < 1 (3)
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and log-concave if

f [ux+(1−u)y]≥ [ f (x)]u . [ f (y)]1−u ,0 < u < 1, (4)

holds for all x,y ∈D, where D is a subinterval of the real line R and R+ denotes
the positive real-axis.

It is well-known that a family of log-convex functions is closed under addi-
tion and multiplication of real numbers.

Logarithmically convex (log-convex) functions are of interest in many areas
of mathematics and science. They have been found to play an important role in
the theory of special functions and mathematical statistics (see [1], [7]).

In Section 2, we establish some generalized inequalities for gamma func-
tions, given in the form of Corollary 2.4, Theorem 2.6 and Theorem 2.8. This
research is motivated by the results obtained by Neuman [6]. Some of the tech-
niques used in the subsequent sections are the same as those used in [6].

2. Main Results

Theorem 2.1. Let us take

φ ≡ φ (a,b,c,d,x) =
[

f (a+bx)
f (c+dx)

] 1
(a−c)+(b−d)x

, (5)

where a+bx,c+dx∈D, (a− c)+(b−d)x 6= 0 and f : R→R+ is a log-convex
function as defined by (3).
Then the function φ (a,b,c,d,x) increases with an increase in either of a,b,c or
d.

Proof. Let

Φ = lnφ =
ln f (a+bx)− ln f (c+dx)

(a− c)+(b−d)x
. (6)

From [4] , [6] we infer that Φ, being first order divided difference of a convex
function, is an increasing function in both a+bx and c+dx and thus φ has the
desired monotonicity property in either of a,b,c or d.

Remark 2.2. In particular for b = d = 1, Theorem 2.1 reduces to the one estab-
lished by Neuman [6].

Corollary 2.3. The function
[

Γ(1+kx)
Γ(1+ky)

] 1
(x−y)k , (kx,ky > −1,x 6= y,k 6= 0) is in-

creasing in both the variables x and y and [Γ(1+ kx)]
1
kx , (kx >−1,x 6= 0,k 6= 0)

is increasing in the variable x.
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Proof. In Theorem 2.1, if we take f (x) = Γ(x), a = c = 1, replace x by k, b
by x and d by y, we arrive at the first part of the corollary and the second part
follows on taking y = 0 in the first part.

Corollary 2.4. If in Theorem 2.1 we take f to be continuously differentiable
function on D, then the following inequalities hold.

For x≥ 0,

{(a− c)+(b−d)x} f
′
(c+dx)

f (c+dx)
≤ ln

f (a+bx)
f (c+dx)

≤ {(a− c)+(b−d)x} f
′
(a+bx)

f (a+bx)
, (7)

where a+bx,c+dx ∈ D, (a− c)+(b−d)x 6= 0
and

{(a− c)+(b−d)x}Ψ(c+dx)≤ ln
Γ(a+bx)
Γ(c+dx)
≤ {(a− c)+(b−d)x}Ψ(a+bx) , (8)

where a+bx,c+dx ∈ R+.
For x < 0,

{(a− c)+(b−d)x} f
′
(a+bx)

f (a+bx)
≤ ln

f (a+bx)
f (c+dx)

≤ {(a− c)+(b−d)x} f
′
(c+dx)

f (c+dx)
, (9)

where a+bx,c+dx ∈ D, (a− c)+(b−d)x 6= 0 and

{(a− c)+(b−d)x}Ψ(a+bx)≤ ln
Γ(a+bx)
Γ(c+dx)
≤ {(a− c)+(b−d)x}Ψ(c+dx) , (10)

where a+bx,c+dx ∈ R+.

Proof. Differentiating (5) partially with respect to ‘b’ and ‘d’ and using Theo-
rem 2.1 i.e. φ increases with increase in b and d, we get

{(a− c)+(b−d)x}2 ∂φ

∂b

= φx

[
{(a− c)+(b−d)x} f

′
(a+bx)

f (a+bx)
− ln

f (a+bx)
f (c+dx)

]
≥ 0, (11)
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and

{(a− c)+(b−d)x}2 ∂φ

∂d

=−φx

[
{(a− c)+(b−d)x} f

′
(c+dx)

f (c+dx)
− ln

f (a+bx)
f (c+dx)

]
≥ 0. (12)

In the above inequalities (11) and (12), if we consider both the cases x > 0
and x < 0, we get the inequality (7) established for x > 0 and the inequality (9)
for x < 0.

Next we prove the double inequality (7) for x = 0. For this, we use Theorem
2.1 with x = 0 and differentiate equation (5) partially with respect to ′a′ and ′c′

to arrive at

(a− c)2 ∂φ

∂a
= φ

[
(a− c)

f
′
(a)

f (a)
− ln

f (a)
f (c)

]
≥ 0,

and

(a− c)2 ∂φ

∂c
=−φ

[
(a− c)

f
′
(c)

f (c)
− ln

f (a)
f (c)

]
≥ 0,

These results combined together give inequality (7) for x = 0.
The inequalities (8) and (10) can be established on taking f (x) = Γ(x) in

(7) and (9) respectively and using the definition (2).

Lemma 2.5. Let g : R+ → R be a function and ai, xi > 0, 1 ≤ i ≤ n. If the
function g(x)

x is increasing on R+, then

g
(

σ

m

)
≥ na

m

n

∑
i=1

g
(aixi

na

)
, (13)

where σ = ∑
n
i=1 aixi , m = ∑

n
i=1 ai , a = max(ai).

Next if g(x)
x is decreasing on R+, then we have reverse inequality

g
(

σ

m

)
≤ na

m

n

∑
i=1

g
(aixi

na

)
. (14)

Proof. We have

σ

m
=

∑
n
i=1 aixi

∑
n
i=1 ai

≥ aixi

∑
n
i=1 ai

≥ aixi

na
, ∀ i ∈ {1,2...,n} .
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Next, by using the assumption that g(x)
x is increasing on R+, we get

g
(

σ

m

)
σ

m
≥

g
(aixi

na

)
aixi
na

,∀ i ∈ {1,2...,n} . (15)

Using (15), we now write

g
(

σ

m

)
=

σ

m
g
(

σ

m

)
σ

m
≥ 1

m

n

∑
i=1

aixi
g
(aixi

na

)
aixi
na

≥ na
m

n

∑
i=1

g
(aixi

na

)
. (16)

This proves the inequality (13).
The reverse inequality (14) in the case when g(x)

x is decreasing on R+ can
be proved on similar lines.

Theorem 2.6. If ai, xi > 0, 1≤ i≤ n, a = max
i

(ai), m = ∑
n
i=1 ai then for r ≥ 1,

we have

(∑n
i=1 aixi)

r

mr

[
Γ

(
∑

n
i=1 aixi

m
+1
)] m

∑
n
i=1 aixi

≥ na
m

n

∑
i=1

(aixi

na

)r [
Γ

(aixi

na
+1
)] na

aixi

(17)
and for r ≤ 0

(∑n
i=1 aixi)

r

mr

[
Γ

(
∑

n
i=1 aixi

m
+1
)] m

∑
n
i=1 aixi

≤ na
m

n

∑
i=1

(aixi

na

)r [
Γ

(aixi

na
+1
)] na

aixi .

(18)

Proof. We know by [7] that the function xr[Γ(x+1)]
1
x

x , x > 0 is strictly increasing
for r ≥ 1 and strictly decreasing for r ≤ 0.
If we take g(x) = xr [Γ(x+1)]

1
x , r ≥ 1 and apply the first part (13) of Lemma

2.5 for r ≥ 1, we obtain the inequality (17) and for r ≤ 0, using the second part
(14) of Lemma 2.5, we get the inequality (17).

Remark 2.7. In particular, for r = 0, a1 = a2 = ...= an = a, yi =
xi
n , inequality

(18) reduces to [
Γ

(
n

∑
i=1

yi +1

)] 1
∑

n
i=1 yi

≤ [Γ(yi +1)]
1
yi

which is the same as obtained by Neuman [6].

Theorem 2.8. For 1 ≤ i ≤ n, ai > 0, xi > −1 (xi 6= 0) the following double
inequality holds

n

∏
i=1

[Γ(1+ xi)]
aiσ
xim ≤

[
Γ

(
1+

σ

m

)]m
≤

n

∏
i=1

[Γ(1+ xi)]
ai , (19)

where m = ∑
n
i=1 ai and σ = ∑

n
i=1 aixi.
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Proof. To prove second part of the inequality (19), we use the log-convex prop-
erty (3) of gamma function,

f (x) = Γ(1+ x) for x >−1 and write

[
Γ

(
1+

σ

m

)]m
=

[
Γ

(
1+

∑
n
i=1 aixi

m

)]m

=

[
Γ

{
1+

n

∑
i=1

(ai

m

)
xi

}]m

≤
n

∏
i=1
{Γ(1+ xi)}

ai
, xi >−1. (20)

Further, to prove the first part of the inequality (19), we use the fact that
f (x) = [Γ(1+ x)]

1
x is log-concave for x >−1 (see [3]) and write

[
Γ

(
1+

σ

m

)]m
=
{

Γ

(
1+

σ

m

)} σ

σ/m
=

[
Γ

(
1+

∑
n
i=1 aixi

m

) 1
∑

n
i=1 aixi/m

]σ

≥

[
n

∏
i=1
{Γ(1+ xi)}ai/xi

]σ

,xi >−1, xi 6= 0. (21)

Remark 2.9. In particular for a1 = a2 = ...= an = 1,σ = ∑
n
i=1 xi in inequality

(19) it reduces to

n

∏
i=1

[Γ(1+ xi)]
σ

xin ≤
[
Γ

(
1+

σ

n

)]n
≤

n

∏
i=1

[Γ(1+ xi)] ,

which is the same as obtained by Neuman [6].
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