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A COMBINATORIAL GENERALIZATION
OF THE DURFEE SQUARE

MARIA ARTALE

Introduction.

The Durfee sguare of a partition A, D()), is defined as the largest
sgquare contained in the shape of A.

It was proved in [2] (cf. aso [3]) that the size of D(X), d(A), was
related to the perfection of a certain module M;, an algebro-geometric
object (cf. aso [1], [4], [5]).

The goa of this note is to propose a generaization of the notion of
Durfee sguare to the case of a pair («, 8) of partitions.

More precisely, given two partitions « and g st. the last row of g is
shorter then the first row of «, we define in Section 2, a partition D(«, B)
(not necessarily a square), which we call “generalized Durfee partition
of o w.rt. 8”. D(a, B) is aso related to algebro-geometric problems, as
it is indicated for instance by the fact (proven in Section 3) that D(«, B)
allows us to construct Lascoux’s rectification of « and g (cf. [8]).

We conjecture that D(«, 8) might encode important information on
the minimal free resolution of significant classes of modules (see, for
instance [10]).

Entrato in redazione il Entrato in redazione il 13 Giugno 2007.
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1. Preliminaries.

In this section we recall some background material (cf. [1], [6], [7],
[90).

By a partition A we mean a weakly increasing sequence of non-
negative integers (A1, A2, ..., At).

The non-zero numbers A; are called the parts of A; itslengtht = 1(X)
is the number of A; which are non zero. We identify two partitions which
differ only by zeros added on the left. If A1 + X2+ ...+ A = n, then
n is caled the weight of A and denoted by n = |1|. The integer d such
that »_j >i+1fori=0,1,...,d—1and A_g < d iscaled the size
of the Durfee square of A (the Durfee square of A is the largest square
partition contained in A), for example, if A = (1, 3,4), thend = 2.

Sometimes we use a notation for A which indicates the number of
times each integer occurs as a part;

A= (1M, 2M2 k™)

means that exactly ny of the parts of A are equal to k, then the
sequence {ny, Ny, ..., Nj, ...} is caled the multiplicity of A denoted by
mult(A) = {ny, no, ..., Nj, ...}

Clearly, if some m; = 0, then i™ = @.

For two partitions A, u we write A D u if Ax > ux for al k. If
the columns of the diagram of A are of lenghts X1, ..., %, in a weakly
increasing order, then the partition (11, A2, . .., Ap) is called the conjugate
of A and denoted by .

For two partitions A 2 u, we write A/u for the corresponding
skew partition. Its diagram is obtained as a set-theoretic difference of
the diagrams of A and w. The diagram of A/u has rows of lengths
A—u1, Ao— 2, ... Theweight |1 /u| of A/ isdefined as the difference
IA| — ||. We denote (A/u) = X/ﬁ and call it the conjugate of A/Lu.

The partition A x u, product of two partitions (A1, ..., At), (i1, ..., Uq),
is the skew partition

Outs oo i, e iz + i) [ G,

Let A = (Aq,..., ) and u = (u1, ..., 1ugq) be two sequences in
7' and 79 respectively, then P (1, ) and m(x, u) have the following
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meaning: we consider the set
§={hm+Li+2a+3 . A+tus+t+1l ... pug+t+a},

then two cases are possible; either al these numbers are positives and
different, and then this set can be uniquely written as §’ = (61, .. ., 8t4q),
with §’ a partition after reordering § and m(x, ©) = minima number
of traspositions necessary to get §' from §, or otherwise, we let §' =
@, m(i, n) = 0.

Notice that if A, u are partitions such that A; < u1, then ' = 6§ and
m(i, u) = 0.

Now if §' # @, by definition [8] we have

P()"’/*’L):(81_1782_27---78t+q_t_Q)'

Otherwise P (A, u) = 4.
P, n) (if non-empty) is called the rectification of the sequence
(A, ).

Remark 1.1. Notice that " # ¢ if and only if the set § = {A; +
L...,a+tua+t+1,..., uqg +t+q} consists of t +q elements
(positive integers) displayed in a certain order, uniquelty defined by the
sequence (A, u). More precisely (A, n) defines a permutation o € St
on the set § such that m(x, u) = I(o0) = length of the permutation o .

Clearly P(x, u) = (A, w) if and only if m(x, w) = 0, if and only if
At < 1.

Example 1.1. For » = (1,4,3), u = (1,5), we have P(\, n) =
B, m(r,u) =o00.1fx=(1,4, n=(2005),thens={26,5,4,10},

hence
(2 4 5 6 10
o =

> 6 5 4 10) l@=mam=3
Pa,nw)=(1,2,2,2,5).

The following examples illustrate the process of “rectification” of all
the sequences (A1,...,As) € Z° which define the same partition A (if
non-empty).

Consider the sequence A = (6,4, —1) € z3, then A defines uniquely
the permutation o € S3.

A B C
=(c) ® ) o) =3



110

obtained as shown below:
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. =
‘é\\ © %%%%4%

Notice that from the last row of the permutation o above, we can
read directly the partition A = (1,4,4) = P(6,4,—1). Infact C = -1
goes to the first place viao, s0 (C) = -14+2=1, B =4 remains in
the same place via o, so (B) = 4, findly A = 6 goes to the third place

viao,s0 (A)=6—-2=4.

With the same procedure, considering all the other permutations of
83, for A = (1, 4, 4) we obtain:

":(<ﬁ> (E) (g))
":(<2> (E) ((é))
":(<é> (/Ei) <g>)
":(<§> (& (i))

7= (<é) <E\) ((é))

, length=0
, length=1
, length=1
, length=2
, length=2

—

A= (14,4
A=(1,5,3)
A= (5,04
A= (6,0,3)
A= (5,5, —1).
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2. Key definition.

In this section we give our main definition of generalized Durfee
square. More precisely:
Definition 2.1. Leta = (a1, ..., ), B = (B1, ..., Bg) be two partitions,
by the Durfee square of « with respect to S we mean the partition
D(«, B) = (dg, dg—1,...,d1) S (d,...,d),
—_———
q

where d is the Durfee square of « and dj, for j =1,2,...,q, are such
that
o >i+14+p for 1=01...,d—-1
and
at-d; < dj + Bj.
Remark 2.1.

i) If follows from the definition that d; = O iff oy < ;. Clearly dj # 0
isthe largest integer such that the rectangular partition (dj+8;)% < «.
Moreover g < Bj;+1 implies that dj > dj,1.

i) Notice that d; < d, hence D(a,8) € (d,...,d), so that 0 <
e e’

q
D@, p)| <d-q.

iii) From the definition (2.1) if follows that

D(a, (0...0) =(,...,d),
| I
in particular
D(a, B) = (0,...,0) if and only if B1 > a,
—_———
g
Notice that

D(«, B) is arectangle if and only if d; =dy = --- =dq.

The pictures below illustrate the various cases.
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in particular we have the following cases

C) « rectangle with D(«, B) not a rectangle
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d) « rectangle with D(«a, B) rectangle =

iv) Notice that:
pcp — D(p)<cDp)

aCad — D(a,B)CDW,Pp).
If B =0, we let by definition D(«, @) = 0.

3. Main results.

What follows shows how the generalized notion of Durfee square
is used to compute P(«a, B). More precisely, we will show that if « is
“large enough”, then }D(a, ﬁ)} = (o) = m(a, B), Wwhere o € 8,4 isthe
permutation defined by the sequence {a4, ..., ar, 1, ..., Bq} (cf. Remark
1.1). To simplify the notations, given «, B, with D(«, ) = (dg, ..., d1),
we write o = (Ao, A1, ..., Ag), where:

AO = (al’ st al’—dl)’
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A = ((dg + B % %+1 + C*) = (ar_g 115 - - - » Or—dgsr)s
CK C ((dks1+ Brar — Ak — B)% %),
CK=(c,....ch q.)-

Notice that, if dj = 0, then for all k > i, Ay =0.

Theorem 3.1. Let o = (@1,...,0), B = (B1,...,Bq), D(a,p) =
(dg, ..., d1). Consider the partitions

B'=Brph2+1 ... .6g+0q-1), D(e, B)) = (dg, ..., dp)

then
* P(a,B) # 0 if and only if & D (Ao, A1, Az, ..., Ag), Where

A = ((dy + Bi)% %, d, + B, + 1)%-dee1y.

In this case m (e, B) = }Q(a, )| =1(o) and
xk P(a, B) = (Ao, Ar, ..., Ag)

with
sk Ag = (O + B — K+ D% % + C df + B, (df + ok %1 +TH
where C* and C¥ are such that
C /(= d + gty = C x T,
otherwise P(a, B) = 0.

Proof. Let g = 1, then the process of rectification of the sequence
{Ao,d1+B1+cy, di+B1+C5, ..., di+Br+cCf . B1} leads, after d; steps,
to the sequence

{Ao,d1+ﬁ1,d1+ﬁ1+c}—1,d1+ﬁ1+c;—1,...,d1+ﬂ1+c§l—1}

which is a partition if c} > 1. In this case m(«, B) = d;, otherwise
P(a, 1) = ¥ and m(a, B) = oo. Now the claim follows by induction
since

P(a, (B1, B2)) = P(P(a, B1), B2) and D(P(a, B1), B2) = (dy).
Notice that 0 < dy —d; < k — 1. In particular

D, B) € D(a, ), 0 that 0<m(e,B)=|D(, B)| < |D(, B)|.
O
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Remark 3.1. The following pictures illustrate the k-step of induction in
(Theorem 3.1).

Let us denote
ak:dk—dﬁ, 0 < a <k-1, by +a = k-1, gk =
dk+1 — dg + Br+1 — Bk — K (see pictures below),

dic

////////}////////////////;B> -
gdﬁﬁlrk“ ,,,,,,,,,,,, “ak ,,,,,,,,,,,,,,,,,,,,,,,,

then it is clear from above that C* < (by,...,by) and
—_———

ag
—K
C < (O --->9)-
—_——

d; —dkt1
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Corollary 3.1. Let o be a rectangle, D(«, B) # (0%), then P(«, B) # ¢
if and only if

i) D(, B) = (dg, dg—1, ..., dy) is a rectangle,
i) dy = I(a) (notice that in general d; < I(@)),
iii) 1(@) > Bs +dy +s, s =1(D(a, B)).
If the above conditions are satisfied, then
P(a, B) = ((d}) + (B1, - . ., Bs), (a1 — $)%, B
and
m(w, B) =di-s.

Proof. Let g = 2, D(«, (81, B2)) = (d2,d;). Assume d; < di, then
O[1:d2+,32:d1+,31, dé:dz—lso P(a,,B):V)ThegeneraI
case is clear, see pictures below:

B*=(Bus1.. Bo) TH

ﬁs

,%7

é Cl= P(QB)

d1 E _ Bl E %% %) dl

\\

4. Examples of P(e, B).

Example 4.1. Let s = I(D(«, B)), then P(a, B) # @ if and only if the
diagram of o = (Cr—dy+1s - - - » ar), for k=1,..., s, is one of the
diagrams shown below:
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k-1
€ ool >
| d'y=dg
d'v=dg-1
fod'e=dg-2
C(.kz = :
L de=dik+2
C(.kk.z _ | k k
ok = ‘ d'y=di-k+1

Be=PBc+k—1 where g =(B1,....B8y), k=1,2,....q
a = (ala a29'"9ar—d1’ar—d1+1"'ar—dzv"'9ar—dq+l""’ar)'

Example 4.2. The diagrams below describe pictorially the calculation of
P(a, B), fors =1,2,3, where s = 1(D(a, B)).
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a s=1 B=(B), D(a, p)=(d), di>0.

Plo.f)=

For example for « = (9,11, 11), B8 = (4), D(a, B) = (3),

P(a, B) = (7,8, 10, 10);
b) s =2, B = (B B2, D(a, B) = (d2,d1), d2#0:

P(a.py=

Ao

di+B1<da+ B2, dy=da.

ii) o=
P(a.p)=

di+pr<da+ B, dy=dy—1
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For example:

1) o =(12,13,13,17,18,19), B = (4,10), D(a, B) = (3,6), P(«, B) =
(10, 11, 12, 12, 13, 15, 16, 16).

i) o« = (12,13, 13,13, 15, 17), B8 = (4, 10), D(a, B) = (3, 6).

| extent my thanks to Giandomenico Boffi for his advice. | aso thank
the referees for their valuable comments and suggestions.
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