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Introduction.

The Durfee square of a partition λ, D(λ), is defined as the largest
square contained in the shape of λ.

It was proved in [2] (cf. also [3]) that the size of D(λ), d(λ), was
related to the perfection of a certain module Mλ, an algebro-geometric
object (cf. also [1], [4], [5]).

The goal of this note is to propose a generalization of the notion of
Durfee square to the case of a pair (α, β) of partitions.

More precisely, given two partitions α and β s.t. the last row of β is
shorter then the first row of α, we define in Section 2, a partition D(α, β)

(not necessarily a square), which we call “generalized Durfee partition
of α w.r.t. β”. D(α, β) is also related to algebro-geometric problems, as
it is indicated for instance by the fact (proven in Section 3) that D(α, β)

allows us to construct Lascoux’s rectification of α and β (cf. [8]).
We conjecture that D(α, β) might encode important information on

the minimal free resolution of significant classes of modules (see, for
instance [10]).
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1. Preliminaries.

In this section we recall some background material (cf. [1], [6], [7],
[9]).

By a partition λ we mean a weakly increasing sequence of non-
negative integers (λ1, λ2, . . . , λt ).

The non-zero numbers λi are called the parts of λ; its length t = l(λ)

is the number of λi which are non zero. We identify two partitions which
differ only by zeros added on the left. If λ1 + λ2 + . . . + λt = n, then
n is called the weight of λ and denoted by n = |λ|. The integer d such
that λt−i ≥ i + 1 for i = 0, 1, . . . , d − 1 and λt−d ≤ d is called the size
of the Durfee square of λ (the Durfee square of λ is the largest square
partition contained in λ), for example, if λ = (1, 3, 4), then d = 2.

Sometimes we use a notation for λ which indicates the number of
times each integer occurs as a part;

λ = (1m1, 2m2, . . . , kmk , . . .)

means that exactly nk of the parts of λ are equal to k , then the
sequence {n1, n2, . . . , ni , . . .} is called the multiplicity of λ denoted by
mult (λ) = {n1, n2, . . . , ni , . . .}.

Clearly, if some mi = 0, then i mi = ∅.
For two partitions λ, µ we write λ ⊇ µ if λk ≥ µk for all k . If

the columns of the diagram of λ are of lenghts λ̃1, . . . , λ̃p in a weakly
increasing order, then the partition (̃λ1, λ̃2, . . . , λ̃p) is called the conjugate
of λ and denoted by λ̃.

For two partitions λ ⊇ µ, we write λ/µ for the corresponding
skew partition. Its diagram is obtained as a set-theoretic difference of
the diagrams of λ and µ. The diagram of λ/µ has rows of lengths
λ1−µ1, λ2−µ2, . . . . The weight |λ/µ| of λ/µ is defined as the difference
|λ| − |µ|. We denote (λ/µ)̃ = λ̃/µ̃ and call it the conjugate of λ/µ.

The partition λ×µ, product of two partitions (λ1, ..., λt), (µ1, ..., µq),
is the skew partition

(λ1, . . . , λt + µ1, λt + µ2, . . . , λt + µq)
/

(λ
q
t ).

Let λ = (λ1, . . . , λt) and µ = (µ1, . . . , µq) be two sequences in
Z

t and Z
q respectively, then P(λ, µ) and m(λ, µ) have the following
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meaning: we consider the set

δ = {
λ1 + 1, λ2 + 2, λ3 + 3, . . . , λt + t,µ1 + t + 1, . . . , µq + t + q

}
,

then two cases are possible; either all these numbers are positives and
different, and then this set can be uniquely written as δ ′ = (δ1, . . . , δt+q),
with δ′ a partition after reordering δ and m(λ,µ) = minimal number
of traspositions necessary to get δ ′ from δ, or otherwise, we let δ ′ =
∅, m(λ, µ) = ∞.

Notice that if λ, µ are partitions such that λt ≤ µ1, then δ′ = δ and
m(λ, µ) = 0.

Now if δ′ �= ∅, by definition [8] we have

P(λ, µ) = (δ1 − 1, δ2 − 2, . . . , δt+q − t − q).

Otherwise P(λ, µ) = ∅.
P(λ, µ) (if non-empty) is called the rectification of the sequence

(λ, µ).

Remark 1.1. Notice that δ ′ �= ∅ if and only if the set δ = {λ1 +
1, . . . , λt + t, µ1 + t + 1, . . . , µq + t + q} consists of t + q elements
(positive integers) displayed in a certain order, uniquelty defined by the
sequence (λ, µ). More precisely (λ, µ) defines a permutation σ ∈ St+q

on the set δ such that m(λ,µ) = l(σ ) = length of the permutation σ .
Clearly P(λ, µ) = (λ,µ) if and only if m(λ, µ) = 0, if and only if

λt ≤ µ1.

Example 1.1. For λ = (1, 4, 3), µ = (1, 5), we have P(λ, µ) =
∅, m(λ,µ) = ∞. If λ = (1, 4), µ = (2, 0, 5), then δ = {2, 6, 5, 4, 10},
hence

σ =
( 2 4 5 6 10

2 6 5 4 10

)
, l(σ ) = m(λ,µ) = 3,

P(λ, µ) = (1, 2, 2, 2, 5).

The following examples illustrate the process of “rectification” of all
the sequences (λ1, . . . , λs) ∈ Z

s which define the same partition λ (if
non-empty).

Consider the sequence λ = (6, 4,−1) ∈ Z
3, then λ defines uniquely

the permutation σ ∈ S3.

σ =
(

A B C
(C) (B) (A)

)
, l(σ ) = 3
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obtained as shown below:

Notice that from the last row of the permutation σ above, we can
read directly the partition λ = (1, 4, 4) = P(6, 4,−1). In fact C = −1
goes to the first place via σ , so (C) = −1 + 2 = 1, B = 4 remains in
the same place via σ , so (B) = 4, finally A = 6 goes to the third place
via σ , so (A) = 6 − 2 = 4.

With the same procedure, considering all the other permutations of
S3, for λ = (1, 4, 4) we obtain:

σ =
( A B C

(A) (B) (C)

)
, length = 0 −→ λ = (1, 4, 4)

σ =
( A B C

(A) (C) (B)

)
, length = 1 −→ λ = (1, 5, 3)

σ =
( A B C

(B) (A) (C)

)
, length = 1 −→ λ = (5, 0, 4)

σ =
( A B C

(B) (C) (A)

)
, length = 2 −→ λ = (6, 0, 3)

σ =
( A B C

(C) (A) (B)

)
, length = 2 −→ λ = (5, 5,−1).
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2. Key definition.

In this section we give our main definition of generalized Durfee
square. More precisely:

Definition 2.1. Let α = (α1, . . . , αt), β = (β1, . . . , βq) be two partitions,
by the Durfee square of α with respect to β we mean the partition

D(α, β) = (dq, dq−1, . . . , d1) ⊆ (d, . . . , d)︸ ︷︷ ︸
q

,

where d is the Durfee square of α and dj , for j = 1, 2, . . . , q, are such
that

αt−i ≥ i + 1 + βj for i = 0, 1, . . . , dj − 1

and

αt−dj ≤ dj + βj .

Remark 2.1.

i) If follows from the definition that d j = 0 iff αt ≤ βj . Clearly dj �= 0
is the largest integer such that the rectangular partition (d j +βj)

dj ⊆ α.
Moreover βj ≤ βj+1 implies that dj ≥ dj+1.

ii) Notice that d1 ≤ d , hence D(α, β) ⊆ (d, . . . , d)︸ ︷︷ ︸
q

, so that 0 ≤
∣∣D(α, β)

∣∣ ≤ d · q .

iii) From the definition (2.1) if follows that

D(α, (0 . . . 0)︸ ︷︷ ︸
i

) = (d, . . . , d)︸ ︷︷ ︸
i

,

in particular

D(α, β) = (0, . . . , 0)︸ ︷︷ ︸
q

if and only if β1 ≥ αt ,

Notice that

D(α, β) is a rectangle if and only if d1 = d2 = · · · = dq .

The pictures below illustrate the various cases:
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a) D(α, β) = (0, . . . , 0)︸ ︷︷ ︸
q

⇒

b) D(α, β) = (0q−s, ds, . . . , d1) ⇒

in particular we have the following cases

c) α rectangle with D(α, β) not a rectangle ⇒
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d) α rectangle with D(α, β) rectangle ⇒

e) α not a rectangle with D(α, β) a rectangle ⇒

iv) Notice that:

β ⊆ β ′ → D(α, β ′) ⊆ D(α, β)

α ⊆ α′ → D(α, β) ⊆ D(α′, β).

If β = ∅, we let by definition D(α,∅) = ∅.

3. Main results.

What follows shows how the generalized notion of Durfee square
is used to compute P(α, β). More precisely, we will show that if α is
“large enough”, then

∣∣D(α, β)
∣∣ = l(σ ) = m(α, β), where σ ∈ St+q is the

permutation defined by the sequence {α1, . . . , αr , β1, . . . , βq} (cf. Remark
1.1). To simplify the notations, given α, β , with D(α, β) = (dq, . . . , d1),
we write α = (A0, A1, . . . , Aq), where:

A0 = (α1, . . . , αr−d1),
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Ak = ((dk + βk)
dk−dk+1 + Ck) = (αr−dk+1, . . . , αr−dk+1),

Ck ⊆ ((dk+1 + βk+1 − dk − βk)
dk−dk+1),

Ck = (ck
1, . . . , ck

dk−dk+1
).

Notice that, if di = 0, then for all k ≥ i, Ak = ∅.

Theorem 3.1. Let α = (α1, . . . , αr), β = (β1, . . . , βq), D(α, β) =
(dq, . . . , d1). Consider the partitions

β ′ = (β1, β2 + 1, . . . , βq + q − 1), D(α, β ′) = (d ′
q, . . . , d ′

1)

then
∗ P(α, β) �= ∅ if and only if α ⊇ (A0, A1, A2, . . . , Aq), where

Ak = ((dk + βk)
dk−d ′

k , (d ′
k + β ′

k + 1)d ′
k−dk+1).

In this case m(α, β) = ∣∣D(α, β ′)
∣∣ = l(σ ) and

∗∗ P(α, β) = (A0, Â1, . . . , Âq)

with
∗ ∗ ∗ Âk = ((dk + βk − k + 1)dk−d ′

k + Ĉk, d ′
k + βk, (d ′

k + βk)
d ′

k−dk+1 + C
k
)

where C
k

and Ĉk are such that

Ck
/

((k − dk + d ′
k)

d ′
k−dk+1) = Ĉk × C

k;
otherwise P(α, β) = ∅.

Proof. Let q = 1, then the process of rectification of the sequence
{A0, d1 +β1 +c1

1, d1 +β1 +c1
2, . . . , d1 +β1 +c1

d1
, β1} leads, after d1 steps,

to the sequence

{A0, d1 + β1, d1 + β1 + c1
1 − 1, d1 + β1 + c1

2 − 1, . . . , d1 + β1 + c1
d1

− 1}
which is a partition if c1

1 ≥ 1. In this case m(α, β) = d1, otherwise
P(α, β1) = ∅ and m(α, β) = ∞. Now the claim follows by induction
since

P(α, (β1, β2)) = P(P(α, β1), β2) and D(P(α, β1), β2) = (d ′
2).

Notice that 0 ≤ dk − d ′
k ≤ k − 1. In particular

D(α, β ′) ⊆ D(α, β), so that 0 ≤ m(α, β) = ∣∣D(α, β ′)
∣∣ ≤ ∣∣D(α, β)

∣∣.
�
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Remark 3.1. The following pictures illustrate the k-step of induction in
(Theorem 3.1).

Let us denote
ak = dk − d ′

k, 0 ≤ ak ≤ k − 1, bk + ak = k − 1, gk =
dk+1 − d ′

k + βk+1 − βk − k (see pictures below),

then it is clear from above that Ĉk ⊆ (bk, . . . , bk)︸ ︷︷ ︸
ak

and

C
k ⊆ (gk, . . . , gk)︸ ︷︷ ︸

d ′
k−dk+1

.
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Corollary 3.1. Let α be a rectangle, D(α, β) �= (0q), then P(α, β) �= ∅
if and only if

i) D(α, β) = (dq, dq−1, . . . , d1) is a rectangle,

ii) d1 = l(α) (notice that in general d1 ≤ l(α)),

iii) l (̃α) ≥ βs + d1 + s, s = l(D(α, β)).

If the above conditions are satisfied, then

P(α, β) = ((ds
1) + (β1, . . . , βs), (α1 − s)d1, β#)

and

m(α, β) = d1 · s.

Proof. Let q = 2, D(α, (β1, β2)) = (d2, d1). Assume d2 < d1, then
α1 = d2 + β2 = d1 + β1, d ′

2 = d2 − 1 so P(α, β) = ∅. The general
case is clear, see pictures below:

4. Examples of P(α, β).

Example 4.1. Let s = l(D(α, β)), then P(α, β) �= ∅ if and only if the
diagram of αk = (αr−dk+1, . . . , αr), for k = 1, . . . , s , is one of the
diagrams shown below:
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β ′
k = βk + k − 1, where β = (β1, . . . , βq), k = 1, 2, . . . , q

α = (α1, α2, . . . , αr−d1, αr−d1+1 . . . αr−d2, . . . , αr−dq+1, . . . , αr).

Example 4.2. The diagrams below describe pictorially the calculation of
P(α, β), for s = 1, 2, 3, where s = l(D(α, β)).
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a) s = 1, β = (β1), D(α, β) = (d1), d1 > 0.

For example for α = (9, 11, 11), β = (4), D(α, β) = (3),
P(α, β) = (7, 8, 10, 10);

b) s = 2, β = (β1, β2), D(α, β) = (d2, d1), d2 �= 0 :

i)

d1 + β1 < d2 + β2, d ′
2 = d2.

ii)

d1 + β1 < d2 + β2, d ′
2 = d2 − 1.
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For example:

i) α = (12,13,13,17,18,19), β = (4, 10), D(α, β) = (3, 6), P(α, β) =
(10, 11, 12, 12, 13, 15, 16, 16).

ii) α = (12, 13, 13, 13, 15, 17), β = (4, 10), D(α, β) = (3, 6).

I extent my thanks to Giandomenico Boffi for his advice. I also thank
the referees for their valuable comments and suggestions.
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