Thermo-elastic plane deformations in doubly-connected domains with temperature and pressure which depend of the thermal conductivity
Keywords:
Plane strain problem, Doubly-connected domain, Weak formulation, Cesaro-Volterra boundary conditions, Pressure dependence of thermal conductivity, Existence and uniqueness of solutionsAbstract
We propose a new weak formulation for the plane problem of thermoelastic theory in multiply-connected domains. This permits to avoid the difficulties connected with the Cesaro-Volterra boundary conditions in the related elliptic boundary-value problem. In the second part we consider a nonlinear version of the problem assuming that the thermal conductivity depends not only on the temperature but also on the pressure. Recent studies reveals that this situation can occur in practice. A theorem of existence and uniqueness is proved for this problem.Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.