A proof that the maximum rank for ternary quartics is seven
Keywords:
Waring rank, tensor rank, secant varietiesAbstract
At the time of writing, the general problem of finding the maximal Waring rank for homogeneous polynomials of fixed degree and number of variables (or, equivalently, the maximal symmetric rank for symmetric tensors of fixed order and in fixed dimension) is still unsolved. To our knowledge, the answer for ternary quartics is not widely known and can only be found among the results of a master's thesis by Johannes Kleppe at the University of Oslo (1999). In the present work we give a (direct) proof that the maximal rank for plane quartics is seven, following the elementary geometric idea of splitting power sum decompositions along three suitable lines.Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.