Edge ideals and DG algebra resolutions
Keywords:
DG algebra resolution, Koszul homology, acyclic closure, minimal model, deviations, Poincaré series, Hilbert series, Koszul algebra, edge ideal, paths and cyclesAbstract
Let R = S/I where S = k[T_1, . . . , T_n] and I is a homogeneous ideal in S. The acyclic closure R<Y> of k over R is a DG algebra resolution obtained by means of Tate’s process of adjoining variables to kill cycles. In a similar way one can obtain the minimal model S[X], a DG algebra resolution of R over S. By a theorem of Avramov there is a tight connection between these two resolutions. In this paper we study these two resolutions when I is the edge ideal of a path or a cycle. We determine the behavior of the deviations ε_i (R), which are the number of variables in R<Y> in homological degree i. We apply our results to the study of the k-algebra structure of the Koszul homology of R.Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.