Curvilinear schemes and maximum rank of forms

Authors

Keywords:

Maximum rank, curvilinear rank, curvilinear schemes, cactus rank

Abstract

We define the \emph{curvilinear rank} of a degree $d$ form $P$ in $n+1$ variables as the minimum length  of a curvilinear scheme, contained in the $d$-th Veronese embedding of $\mathbb{P}^n$, whose span contains the projective class of $P$. Then, we give a bound for rank of any homogenous polynomial, in dependance on its curvilinear rank.

Author Biographies

  • Edoardo Ballico, Dipartimento di Matematica, Università di Trento

    Dipartimento di Matematica

    Professor

  • Alessandra Bernardi, Dipartimento di Matematica, Università di Trento

    Dipartimento di Matematica

    Professor

Downloads

Published

2017-06-20

Issue

Section

Articoli