On the minimal submodules of a module
Keywords:
Second submodule, minimal submodule, Zariski topology, spectral spaceAbstract
For any module $M$ over a commutative ring $R$, $Spec^{s}_{R}(M)$ (resp. $Min_{R}(M)$) is the collection of all second (resp. minimal) submodules of $M$. In this article we investigate the interplay between the topological properties of $Min_{R}(M)$ and module theoretic properties of $M$. Also, for various types of modules $M$, we obtain some conditions under which $Min_{R}(M)$ is homeomorphic with the maximal ideal space of some ring.Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.