On the approximate controllability of some semilinear partial functional integrodifferential equations with unbonded delay
Abstract
This work concerns the study of the approximate controllability for some nonlinear partial functional integrodifferential equation with infinite delay arising in the modelling of materials with memory, in the framework of Hilbert spaces. We give sufficient conditions that ensure the approximate controllability of the system by supposing that its linear undelayed is part approximately controllable, admits a resolvent operator in the sense of Grimmer, and by making use of the measure of noncompactness and the Mönch fixed-point Theorem. As a result, we obtain a generalization of several important results in the literature, without assuming the compactness of the resolvent operator. An example of applications is given for illustration.
Copyright (c) 2019 Patrice Ndambomve, Khalil Ezzinbi
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.