Doubling inequality at the boundary for the Kirchhoff - Love plate's equation with Dirichlet conditions
Abstract
The main result of this paper is a doubling inequality at the boundary for solutions to the Kirchhoff-Love isotropic plate's equation satisfying homogeneous Dirichlet conditions. This result, like the three sphere inequality with optimal exponent at the boundary proved in Alessandrini, Rosset, Vessella, Arch. Ration. Mech. Anal. (2019), implies the Strong Unique Continuation Property at the Boundary (SUCPB). Our approach is based on a suitable Carleman estimate, and involves an ad hoc reflection of the solution. We also give a simple application of our main result, by weakening the standard hypotheses ensuring uniqueness for the Cauchy problem for the plate equation.
Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.