Orlicz spaces and endpoint Sobolev-Poincaré inequalities for differential forms in Heisenberg groups
Abstract
In this paper we prove Poincar´e and Sobolev inequalities for differential forms in the Rumin’s contact complex on Heisenberg groups. In particular, we deal with endpoint values of the exponents, obtaining finally estimates akin to exponential Trudinger inequalities for scalar function. These results complete previous results obtained by the authors away from the exponential case. From the geometric point of view, Poincaré and Sobolev inequalities for differential forms provide a quantitative formulation of the vanishing of the cohomology. They have also applications to regularity issues for partial differential equations.
Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.