The maximum likelihood degree of linear spaces of symmetric matrices
Abstract
We study multivariate Gaussian models that are described by linear conditions on the concentration matrix. We compute the maximum likelihood (ML) degrees of these models. That is, we count the critical points of the likelihood function over a linear space of symmetric matrices. We obtain new formulae for the ML degree, one via line geometry, and another using Segre classes from intersection theory. We settle the case of codimension one models, and characterize the degenerate case when the ML degree is zero.
Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.