Renormalized solutions for some non-coercive quasilinear elliptic problem in Musielak-Orlicz space

Authors

  • H. Hjiaj Abdelmalek Essaadi University, Morocco
  • M. Sasy Abdelmalek Essaadi University, Morocco

Abstract

In this paper, we study the existence of renormalized solutions for the following non-coercive quasilinear elliptic problem: −div(a(x,u,∇u))+g(x,u) =f−div(φ(u)) in Ω, and u=0 on ∂Ω. in the Musielak-Orlicz-Sobolev space W10Lφ(Ω), where−diva(x,u,∇u) is a degenerate Leary Lions operator and g(x,u) is a Caratheodory function that satisfies the sign condition with φ(·) ∈ C0(R,RN) and f ∈ L1(Ω).The Musielak-Orlicz function φ(x,t) is regular and does not necessarily satisfying the ∆2−condition.

Downloads

Published

2024-12-28

Issue

Section

Articoli