Harnack inequality for harmonic functions relative to a nonlinear p-homogeneous Riemannian Dirichlet form
Keywords:
Nonlinear potential theory, Harnack inequality, Nonlinear elliptic problemsAbstract
We consider a measure valued map α(u) defined on D where D is a subspace of L^p(X,m) with X a locally compact Hausdorff topological space with a distance under which it is a space of homogeneous type. Under assumptions of convexity, Gateaux differentiability and other assumptions on α which generalize the properties of the energy measure of a Dirichlet form, we prove the Holder continuity of the local solution u of the problem∫Xµ(u,v)(dx) = 0 for each v belonging to a suitable space of test functions, where µ(u,v) =< α'(u),v >.
Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.