Harnack inequality for harmonic functions relative to a nonlinear p-homogeneous Riemannian Dirichlet form

Authors

  • Marco Biroli Politecnico di Milano
  • Paola Vernole University of Rome ”la Sapienza”

Keywords:

Nonlinear potential theory, Harnack inequality, Nonlinear elliptic problems

Abstract

We consider a measure valued map α(u) defined on D where D is a subspace of L^p(X,m) with X a locally compact Hausdorff topological space with a distance under which it is a space of homogeneous type. Under assumptions of convexity, Gateaux differentiability and other assumptions on α which generalize the properties of the energy measure of a Dirichlet form, we prove the Holder continuity of the local solution u of the problem 

Xµ(u,v)(dx) = 0  for each v belonging to a suitable space of test functions, where µ(u,v) =< α'(u),v >.

Author Biographies

  • Marco Biroli, Politecnico di Milano
    Dipartimento di Matematica ”F. Brioschi”
    Politecnico di Milano,
    Piazza Leonardo da Vinci 32, 20133 Milano Italy
  • Paola Vernole, University of Rome ”la Sapienza”
    Dipartimento di Matematica
    University of Rome ”la Sapienza”,
    Piazzale Aldo Moro 5, 00182 Roma Italy

Downloads

Published

2007-12-06

Issue

Section

Articoli