One-dimensional motion of a material with a strain theshold

Authors

  • A. Farina Università degli Studi di Firenze
  • A. Fasano Università degli Studi di Firenze
  • L. Fusi Università degli Studi di Firenze
  • K.R. Rajagopal Texas A&M University

Keywords:

Implicit constitutive theories, Free boundary problems, Wave equation

Abstract

We consider the one-dimensional shearing motion of a material exhibiting elastic behaviour when the stress is below some threshold. The threshold represents a limit to the deformability, i.e. no further deformation can occur on increasing the stress. The mathematical formulation leads to a free boundary problem for the wave equation, whose structure depends on whether the stress (and the velocity) are continuous across the propagating interface for the strain threshold .
Local existence and uniqueness are proved for the continuous case (in which the interface propagation is subsonic). Some explicit solutions are calculated for another case (with a supersonic interface). It is shown that the model with strain threshold is never the limit of hyperelastic systems.

Author Biographies

  • A. Farina, Università degli Studi di Firenze
    Dipartimento di Matematica “U. Dini”,
    Viale Morgagni 67/a, 50134 Firenze, Italy
  • A. Fasano, Università degli Studi di Firenze
    Dipartimento di Matematica “U. Dini”,
    Viale Morgagni 67/a, 50134 Firenze, Italy
  • L. Fusi, Università degli Studi di Firenze
    Dipartimento di Matematica “U. Dini”,
    Viale Morgagni 67/a, 50134 Firenze, Italy
  • K.R. Rajagopal, Texas A&M University
    Department of Mechanical Engineering
    College Station, Texas 77843, USA

Downloads

Published

2007-12-06

Issue

Section

Articoli