On Green and Green-Lazarfeld conjectures for simple coverings of algebraic curves
Keywords:
Green conjecture, Green-Lazarsfeld conjecture, Syzygy, CoveringAbstract
Let X be a smooth genus g curve equipped with a simple morphism f: X -> C, where C is either the projective line or more generally any smooth curve whose gonality is computed by finitely many pencils. Here we apply a method developed by Aprodu to prove that if g is big enough then X satisfies both Green and Green-Lazarsfeld conjectures. We also partially address the case in which the gonality of C is computed by infinitely many pencils.Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.