Eigenvectors and fixed point of non-linear operators
Keywords:
Measure of noncompactness, k-ψ-contraction, retraction, Fixed point indexAbstract
Let X be a real infinite-dimensional Banach space and ψ a measure of noncompactness on X. Let Ω be a bounded open subset of X and A : Ω → X a ψ-condensing operator, which has no fixed points on ∂Ω.Then the fixed point index, ind(A,Ω), of A on Ω is defined (see, for example, ([1] and [18]). In particular, if A is a compact operator ind(A,Ω) agrees with the classical Leray-Schauder degree of I −A on Ω relative to the point 0, deg(I −A,Ω,0). The main aim of this note is to investigate boundary conditions, under which the fixed point index of strict- ψ-contractive or ψ-condensing operators A : Ω → X is equal to zero. Correspondingly, results on eigenvectors and nonzero fixed points of k-ψ-contractive and ψ-condensing operators are obtained. In particular we generalize the Birkhoff-Kellog theorem [4] and Guo’s domain compression and expansion theorem [17]. The note is based mainly on the results contained in [7] and [8].
Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.