Singular dimension of spaces of real functions

Authors

  • Darko Žubrinić University of Zagreb

Keywords:

Singular set, Fractal set, Singular dimension, Maximally singular function, Function spaces

Abstract

Let X be a space of measurable real functions defined on a fixed open set Ω ⊆ R^N . It is natural to define the singular dimension of X as the supremum of Hausdorff dimension of singular sets of all functions in X.
We say that f ∈ X is a maximally singular function in X if the Hausdorff dimension of its singular set is the largest possible. The paper discusses recent results about singular dimension of Banach spaces of functions, existence and density of maximally singular functions, and provides some open problems.

Author Biography

  • Darko Žubrinić, University of Zagreb
    Department of Applied Mathematics,
    Unska 3, 10000 Zagreb, Croatia

Downloads

Published

2007-12-06

Issue

Section

Articoli