On upper chromatic number for SQS(10) and SQS(16)
Abstract
A mixed hypergraph is characterized by the fact that it possesses anti-edges as well as edges. In a colouring of a mixed hypergraph, every anti-edge has at least two vertices of the same colour and every edge has at least two vertices coloured differently. The upper chromatic number X is the maximal number of colours for which there exists a colouring using all the colours. The concepts of mixed hypergraph and upper chromatic number are applied to STS and SQS. In fact it is possible to consider a Steiner system as a mixed hypergraph when all the blocks are anti-edges (Co-STSs, Co-SQSs) or at the same time edges and anti-edges (BSTSs, BSQSs). In this paper the necessary conditions in order to colour Co-STSs, BSTSs and Co-SQSs, BSQSs are given and the values of upper chromatic number for Co-SQS(10), BSQS(10) and for BSQSs(16), obtained from a doubling construction, are determined.Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.