Global strong solvability of Dirichlet problem for a class of nonlinear elliptic equations in the plane
Abstract
Global solvability and uniqueness results are established for Dirichlet's problem for a class of nonlinear differential equations on a convex domain in the plane, where the nonlinear operator is elliptic in sense of Campanato. We prove existence by means of the Leray-Schauder fixed point theorem, using Alexandrov-Pucci maximum principle in order to find a priori estimate for the solution.Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.