A transport equation for the evolution of shock amplitudes along rays
Abstract
<!-- @page { size: 21cm 29.7cm; margin: 2cm } -->A new asymptotic method is derived for the study of the evolution of weak shocks in several dimension. The method is based on the Generalized Wavefront Expansion derived in [1]. In that paper the propagation of a shock into a known background was studied under the assumption that shock is weak, i.e. Mach Number =1+O(ε), ε ≪ 1, and that the perturbation of the field varies over a length scale O(ε). To the lowest order, the shock surface evolves along the rays associated with the unperturbed state.
An infinite system of compatibility relations was derived for the jump in the field and its normal derivatives along the shock, but no valid criterion was found for a truncation of the system.
Here we show that the infinite hierarchy is equivalent to a single equation that describes the evolution of the shock along the rays. We show that this method gives equivalent results to those obtained by Weakly Nonlinear Geometrical Optics [2].
Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.