Generalized fractional integration of the \overline{H}-function
Keywords:
Fractional integral operators by Saigo-function, generalized Riemann-Liouville, Erdelyi-Kober, Generalized Wright hypergeometric function, Generalized Wright-Bessel function, The polylogarithm and Mittag-Leffler functions, General class of polynomialsAbstract
A significantly large number of earlier works on the subject of fractional calculus give interesting account of the theory and applications of fractional calculus operators in many different areas of mathematical analysis (such as ordinary and partial differential equations, integral equations, special functions, summation of series, et cetera). In the present paper, we study and develop the generalized fractional integral operators given by Saigo. First, we establish two Theorems that give the images of the product of H-function and a general class of polynomials inSaigo operators. On account of the general nature of the Saigo operators, H-function and a general class of polynomials a large number of new and known Images involving Riemann-Liouville and Erdélyi-Kober fractional integral operators and several special functions notably generalized Wright hypergeometric function, generalized Wright-Bessel function, the polylogarithm and Mittag-Leffler functions follow as special cases of our main findings.
Downloads
Published
Issue
Section
License
The authors retain all rights to the original work without any restrictions.
License for Published Contents
"Le Matematiche" published articlesa are distribuited with Creative Commons Attribution 4.0 International. You are free to copy, distribute and transmit the work, and to adapt the work. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
License for Metadata
"Le Matematiche" published articles metadata are dedicated to the public domain by waiving all publisher's rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
No Fee Charging
No fee is required to complete the submission/review/publishing process of authors paper.